Translation and homothetical TH-surfaces in the 3-dimensional Euclidean space \mathbb{E}^{3} and Lorentzian-Minkowski space \mathbb{E}_{1}^{3}

Bendehiba Senoussi ${ }^{1, *}$ and Mohammed Bekkar ${ }^{2}$
1 Department of Mathematics, Ecole Normale Supérieure, Mostaganem 27000, Algeria.
2 Department of Mathematics, Faculty of Sciences, University of Oran 31000, Algeria.; bekkar_99@yahoo.fr
* Correspondence: se2014bendhiba@gmail.com

Received: 29 May 2019; Accepted: 9 July 2019; Published: 29 July 2019.

Abstract

In the 3-dimensional Euclidean space \mathbb{E}^{3} and Lorentzian-Minkowski space \mathbb{E}_{1}^{3}, a translation and homothetical TH-surface is parameterized $z(u, v)=A(f(u)+g(v))+B f(u) g(v)$, where f and g are smooth functions and A, B are non-zero real numbers. In this paper, we define TH-surfaces in the 3-dimensional Euclidean space \mathbb{E}^{3} and Lorentzian-Minkowski space \mathbb{E}_{1}^{3} and completely classify minimal or flat TH-surfaces.

Keywords: Translation surface, homothetical surface, minimal surface.
MSC: 51B20, 53A10, 53C45.

1. Introduction

The theory of minimal surfaces has found many applications in differential geometry and also in physics. In [1] and [2], H. Liu gave some classification results for translation surfaces. A minimal translation hypersurface in a Euclidean space is either locally a hyperplane or an open part of a cylinder on Scherk's surfaces, as proved in Dillen et al. [3]. In [1] was generalized to translation surfaces with constant mean curvature and constant Gaussian curvature in \mathbb{E}^{3}. Sağlam and Sabuncuoğlu proved that every homothetical lightlike hypersurface in a semi-Euclidean \mathbb{E}_{q}^{m+2} space is minimal [4]. Jiu and Sun studied n - dimensional minimal homothetical hypersurfces and gave their classification [5]. R. López [6] studied translation surfaces in the 3-dimensional hyperbolic space and classified minimal translation surfaces. Meng and Liu [7] considered factorable surfaces along two lightlike directions and spacelike-lightlike directions in Minkowski 3 -space \mathbb{E}_{1}^{3} and they also gave some classifcation theorems. In [8], Yu and Liu studied the factorable minimal surfaces in \mathbb{E}_{1}^{3} and \mathbb{E}^{3}, and gave some classification theorems. Güler et al. [9] defined by translation and homothetical TH-surfaces in the three dimensional Euclidean space.

2. Preliminaries

Let \mathbb{E}_{1}^{3} be a 3-dimensional Minkowski space with the scalar product of index 1 given by

$$
g_{L}=d s^{2}=-d x^{2}+d y^{2}+d z^{2}
$$

where (x, y, z) is a rectangular coordinate system of \mathbb{E}_{1}^{3}.
A vector V of \mathbb{E}_{1}^{3} is said to be timelike if $g_{L}(V, V)<0$, spacelike if $g_{L}(V, V)>0$ or $V=0$ and lightlike or null if $g_{L}(V, V)=0$ and $V \neq 0$. A surface in \mathbb{E}_{1}^{3} is spacelike, timelike or lightlike if the tangent plane at any point is spacelike, timelike or lightlike, respectively.

The Lorentz scalar product of the vectors V and W is defined by $g_{L}(V, W)=-v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}$, where $V=\left(v_{1}, v_{2}, v_{3}\right), W=\left(w_{1}, w_{2}, w_{3}\right) \in \mathbb{E}_{1}^{3}$.

For any $V, W \in \mathbb{E}_{1}^{3}$, the pseudo-vector product of V and W is defined as follows:

$$
V \wedge_{L} W=\left(-v_{2} w_{3}+v_{3} w_{2}, v_{3} w_{1}-v_{1} w_{3}, v_{1} w_{2}-v_{2} w_{1}\right)
$$

We denote a surface M^{2} in \mathbb{E}_{1}^{3} by

$$
r(u, v)=\left(r_{1}(u, v), r_{2}(u, v), r_{3}(u, v)\right) .
$$

Definition 1 ([10]). A translation surface in Minkowski 3-space is a surface that is parameterized by either

$$
\begin{array}{lr}
r(u, v)=(u, v, f(u)+g(v)) & \text { if } L \text { is timelike, } \\
r(u, v)=(f(u)+g(v), u, v) & \text { if } L \text { is spacelike, } \\
r(u, v)=(u+v, g(v), f(u)+v) & \text { if } L \text { is lightlike, }
\end{array}
$$

with L the intersection of the two planes that contain the curves that generate the surface.
Theorem 2 ([11]). i) The only translation surfaces with constant Gauss curvature $K=0$ are cylindrical surfaces.
ii) There are no translation surfaces with constant Gauss curvature $K \neq 0$ if one of the generating curves is planar.

Definition 3. A homothetical (factorable) surface M^{2} in the 3-dimensional Lorentzian space \mathbb{E}_{1}^{3} is a surface that is a graph of a function

$$
z(u, v)=f(u) g(v)
$$

where $f: I \subset \mathbb{R} \rightarrow \mathbb{R}$ and $g: J \subset \mathbb{R} \rightarrow \mathbb{R}$ are two smooth functions.
Theorem 4 ([11]). Planes and helicoids are the only minimal homothetical surfaces in Euclidean space.
Accordingly, we define an extended surface in \mathbb{E}_{1}^{3} using definitions as above and called it TH-type surface as follows [9]:

Definition 5. A surface M^{2} in the 3-dimensional Lorentzian space \mathbb{E}_{1}^{3} is a TH-surface if it can be parameterized either by a patch

$$
\begin{equation*}
r(u, v)=(u, v, A(f(u)+g(v))+B f(u) g(v)) \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
r(u, v)=(A(f(u)+g(v))+B f(u) g(v), u, v) \tag{2}
\end{equation*}
$$

where A and B are non-zero real numbers.
Remark 1. i) If $A \neq 0$ and $B=0$ in (1), then surface is a translation surface.
ii) If $A=0$ and $B \neq 0$ in (1), then surface is a homothetical (factorable) surface.

Let \mathbf{N} denotes the unit normal vector field of M^{2} and put $g_{L}(\mathbf{N}, \mathbf{N})=\varepsilon= \pm 1$, so that $\varepsilon=-1$ or $\varepsilon=1$ according to M^{2} is endowed with a Lorentzian or Riemannian metric, respectively.

The mean curvature and the Gauss curvature are

$$
H=\frac{E N+G L-2 F M}{2\left|E G-F^{2}\right|}, K=g_{L}(\mathbf{N}, \mathbf{N}) \frac{L N-M^{2}}{E G-F^{2}}
$$

where E, G, F are the coefficients of the first fundamental form, L, M, N are the coefficients of the second fundamental form.

In this paper, we define $T H$-surfaces in the 3-dimensional Euclidean space \mathbb{E}^{3} and Lorentzian-Minkowski space \mathbb{E}_{1}^{3}, and completely classify minimal or flat TH-surfaces.

3. Minimal TH-surfaces in \mathbb{E}_{1}^{3}

A surface M^{2} in the 3-dimensional Lorentzian space \mathbb{E}_{1}^{3} is called minimal when locally each point on the surface has a neighborhood which is the surface of least area with respect to its boundary [12]. In 1775, J. B. Meusnier showed that the condition of minimality of a surface in \mathbb{E}^{3} is equivalent with the vanishing of its mean curvature function, $H=0$.

Let $z=f(x, y)$ define a graph M^{2} in the Euclidean 3-space \mathbb{E}^{3}. If M^{2} is minimal, the function f satisfies

$$
\begin{equation*}
\left(1+f_{y}^{2}\right) f_{x x}-2 f_{x y} f_{x} f_{y}+\left(1+f_{x}^{2}\right) f_{y y}=0 \tag{3}
\end{equation*}
$$

which was obtained by J. L. Lagrange in 1760.
Let M^{2} be a TH-surface in \mathbb{E}_{1}^{3} parameterized by a patch

$$
r(u, v)=(u, v, A(f(u)+g(v))+B f(u) g(v))
$$

where A and B are non-zero real numbers.
So

$$
r_{u}=\left(1,0, f^{\prime} \alpha\right), \quad r_{v}=\left(0,1, g^{\prime} \gamma\right)
$$

where $\alpha=A+B g$ and $\gamma=A+B f$.
After eliminating f^{\prime} and g^{\prime} we find

$$
E=\frac{\gamma^{\prime 2} \alpha^{2}-B^{2}}{B^{2}}, F=\frac{\alpha \gamma \alpha^{\prime} \gamma^{\prime}}{B^{2}}, G=\frac{\gamma^{2} \alpha^{\prime 2}+B^{2}}{B^{2}} .
$$

The unit normal vector is given by

$$
N=\frac{1}{W B}\left(\alpha \gamma^{\prime},-\gamma \alpha^{\prime}, B\right)
$$

where $W^{2}=B^{-2} g_{L}(N, N)\left(\gamma^{\prime 2} \alpha^{2}-\alpha^{\prime 2} \gamma^{2}-B^{2}\right)$ and

$$
g_{L}(\boldsymbol{N}, \boldsymbol{N})=\varepsilon, \quad \varepsilon=\left\{\begin{array}{l}
1 \quad M^{2} \text { is spacelike }\left(\gamma^{\prime 2} \alpha^{2}-\alpha^{\prime 2} \gamma^{2}-B^{2}>0\right) \\
-1 \quad M^{2} \text { is timelike }\left(\gamma^{\prime 2} \alpha^{2}-\alpha^{\prime 2} \gamma^{2}-B^{2}<0\right)
\end{array}\right.
$$

The constant ε is called the sign of M^{2}.
The coefficients of the second fundamental form are given by

$$
L=\frac{\alpha \gamma^{\prime \prime}}{B W}, \quad M=\frac{\alpha^{\prime} \gamma^{\prime}}{B W}, \quad N=\frac{\gamma \alpha^{\prime \prime}}{B W}
$$

The expression of H is

$$
\begin{align*}
H & =\frac{B^{2}\left(\alpha f^{\prime \prime}\left(1+g^{\prime 2} \gamma^{2}\right)-2 B \alpha \gamma f^{\prime 2} g^{\prime 2}+\gamma g^{\prime \prime}\left(f^{\prime 2} \alpha^{2}-1\right)\right)}{2 W^{3}} \\
& =\frac{\alpha \gamma^{\prime \prime}\left(B^{2}+\alpha^{\prime 2} \gamma^{2}\right)-2 \alpha \gamma \alpha^{\prime 2} \gamma^{\prime 2}+\gamma \alpha^{\prime \prime}\left(\gamma^{\prime 2} \alpha^{2}-B^{2}\right)}{2 B W^{3}} . \tag{4}
\end{align*}
$$

Then M^{2} is a minimal surface if and only if

$$
\begin{equation*}
\alpha \gamma^{\prime \prime}\left(B^{2}+\alpha^{\prime 2} \gamma^{2}\right)-2 \alpha \gamma \alpha^{\prime 2} \gamma^{\prime 2}+\gamma \alpha^{\prime \prime}\left(\gamma^{\prime 2} \alpha^{2}-B^{2}\right)=0 \tag{5}
\end{equation*}
$$

We distinguish the following cases.
Case 1. Let $\gamma^{\prime}=0$. In this case (5) gives $\gamma \alpha^{\prime \prime}=0$.
i) If $\gamma=0$, then $f(u)=-\frac{A}{B}, M^{2}$ is the horizontal plane of equation $z=-\frac{A^{2}}{B}$.
ii) If $\alpha^{\prime \prime}=0$, then $\alpha(v)=a_{1} v+b_{1}, a_{1}, b_{1} \in \mathbb{R}$, and $\gamma(u)=c_{1}, c_{1} \in \mathbb{R}, M^{2}$ is the plane of equation $z=c_{2} v+c_{3}, c_{2}, c_{3} \in \mathbb{R}$.
Case 2. Let $\alpha^{\prime}=0$. In this case (5) gives $\gamma^{\prime \prime} \alpha=0$.
i) If $\alpha=0$, then $g(v)=-\frac{A}{B}, M^{2}$ is the horizontal plane of equation $z=-\frac{A^{2}}{B}$.
ii) If $\gamma^{\prime \prime}=0$, then $\gamma(u)=a_{2} u+b_{2}, a_{2}, b_{2} \in \mathbb{R}$, and $\alpha(v)=c_{4}, c_{4} \in \mathbb{R}, M^{2}$ is the plane of equation $z=c_{5} u+c_{6}, c_{5}, c_{6} \in \mathbb{R}$.

Case 3. Let $\gamma^{\prime \prime}=0$ and $\gamma^{\prime} \neq 0$. Then $\gamma(u)=\lambda u+\delta,(\lambda, \delta) \in \mathbb{R} \backslash\{0\} \times \mathbb{R}$ and α is a solution of the following ODE

$$
\begin{equation*}
-2 \lambda^{2} \alpha \alpha^{\prime 2}+\alpha^{\prime \prime}\left(\lambda^{2} \alpha^{2}-B^{2}\right)=0 \tag{6}
\end{equation*}
$$

Then the general solution of (6) is given by

$$
\alpha(v)=-\frac{B}{\lambda} \operatorname{coth}\left(\lambda_{1} v+\lambda_{2}\right), \lambda_{1}, \lambda_{2} \in \mathbb{R}
$$

Hence

$$
g(v)=-\frac{1}{\lambda} \operatorname{coth}\left(\lambda_{1} v+\lambda_{2}\right)-\frac{A}{B}, \lambda_{1}, \lambda_{2} \in \mathbb{R}
$$

Case 4. Let $\alpha^{\prime \prime}=0$ and $\alpha^{\prime} \neq 0$. Then $\alpha(v)=\lambda v+\delta,(\lambda, \delta) \in \mathbb{R} \backslash\{0\} \times \mathbb{R}$ and γ is a solution of the following ODE

$$
\begin{equation*}
-2 \lambda^{2} \gamma \gamma^{\prime 2}+\gamma^{\prime \prime}\left(\lambda^{2} \gamma^{2}+B^{2}\right)=0 \tag{7}
\end{equation*}
$$

Then the general solution of (7) is given by

$$
\gamma(u)=\frac{B}{\lambda} \tan \left(\lambda_{1} u+\lambda_{2}\right), \lambda_{1}, \lambda_{2} \in \mathbb{R}
$$

Hence

$$
f(u)=\frac{1}{\lambda} \tan \left(\lambda_{1} u+\lambda_{2}\right)-\frac{A}{B}, \lambda_{1}, \lambda_{2} \in \mathbb{R}
$$

Case 5. Let $\gamma^{\prime \prime} \neq 0$. By symmetry in the discussion of the case, we also suppose $\alpha^{\prime \prime} \neq 0$. If we divide (5) by $\alpha \gamma \alpha^{\prime 2} \gamma^{\prime 2}$, we obtain

$$
\frac{B^{2} \gamma^{\prime \prime}}{\gamma \alpha^{\prime 2} \gamma^{\prime 2}}+\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}-\frac{B^{2} \alpha^{\prime \prime}}{\alpha \alpha^{\prime 2} \gamma^{\prime 2}}+\frac{\alpha \alpha^{\prime \prime}}{\alpha^{\prime 2}}-2=0
$$

Thus, after a derivation with respect to u, followed by a derivation with respect to v, we obtain

$$
\left(\frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}\right)_{, u}\left(\frac{1}{\alpha^{\prime 2}}\right)_{, v}-\left(\frac{\alpha^{\prime \prime}}{\alpha \alpha^{\prime 2}}\right)_{, v}\left(\frac{1}{\gamma^{\prime 2}}\right)_{, u}=0 .
$$

Hence we deduce the existence of a real number $k \in \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
\left(\frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}\right)_{, u}=k\left(\frac{1}{\gamma^{\prime 2}}\right)_{, u} \tag{8}\\
\left(\frac{\alpha^{\prime \prime}}{\alpha \alpha^{\prime 2}}\right)_{, v}=k\left(\frac{1}{\alpha^{\prime 2}}\right)_{, v}
\end{array}\right.
$$

The first equation of (8) can integrate obtaining

$$
\begin{equation*}
\gamma^{\prime \prime}=\gamma\left(k+c \gamma^{\prime 2}\right) \tag{9}
\end{equation*}
$$

From the second equation in (8), we obtain

$$
\begin{equation*}
\alpha^{\prime \prime}=\alpha\left(k+b \alpha^{\prime 2}\right) \tag{10}
\end{equation*}
$$

Substituting the above in (5), we get

$$
\alpha \gamma\left(\left(k+c \gamma^{\prime 2}\right)\left(B^{2}+\alpha^{\prime 2} \gamma^{2}\right)-2 \alpha^{\prime 2} \gamma^{\prime 2}+\left(k+b \alpha^{\prime 2}\right)\left(\gamma^{\prime 2} \alpha^{2}-B^{2}\right)\right)=0 .
$$

If we simplify by $\alpha \gamma$ and then we divide by $\alpha^{\prime 2} \gamma^{\prime 2}$, we get

$$
\frac{b B^{2}-k \gamma^{2}}{\gamma^{\prime 2}}-c \gamma^{2}+2=\frac{c B^{2}+k \alpha^{2}}{\alpha^{\prime 2}}+b \alpha^{2}
$$

Hence, we deduce the existence of a real number $\lambda \in \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
\gamma^{\prime 2}=\frac{b B^{2}-k \gamma^{2}}{\lambda-2+c \gamma^{2}} \tag{11}\\
\alpha^{\prime 2}=\frac{c B^{2}+k \alpha^{2}}{\lambda-b \alpha^{2}}
\end{array}\right.
$$

Differentiating with respect to u and v, respectively, we have

$$
\left\{\begin{array}{l}
\gamma^{\prime \prime}=-\frac{\gamma\left((\lambda-2) k+b c B^{2}\right)}{\left(\lambda-2+c \gamma^{2}\right)^{2}} \tag{12}\\
\alpha^{\prime \prime}=\frac{\alpha\left(\lambda k+b c B^{2}\right)}{\left(\lambda-b \alpha^{2}\right)^{2}} .
\end{array}\right.
$$

Let us compare these expressions of $\alpha^{\prime \prime}$ and $\gamma^{\prime \prime}$ with those ones that appeared in (9) and (10) and replace the values of $\gamma^{\prime 2}$ and $\alpha^{\prime 2}$ obtained in (11).
We get

$$
\left\{\begin{array}{l}
\left(\lambda k+b c B^{2}\right)\left(\lambda-1-b \alpha^{2}\right)=0 \\
\left((\lambda-2) k+b c B^{2}\right)\left(\lambda-1+c \gamma^{2}\right)=0 .
\end{array}\right.
$$

We discuss all possibilities.
i) If

$$
\left\{\begin{array}{l}
\lambda k+b c B^{2}=0 \\
(\lambda-2) k+b c B^{2}=0
\end{array}\right.
$$

then $k=0$ and $b c=0$. Then (12) gives $\gamma^{\prime \prime}=0$ and $\alpha^{\prime \prime}=0$, a contradiction.
ii) If

$$
\left\{\begin{array}{l}
\lambda k+b c B^{2}=0 \\
c=0 \\
\lambda=1
\end{array}\right.
$$

we obtain $k=0$. Then (12) gives $\gamma^{\prime \prime}=0$ and $\alpha^{\prime \prime}=0$, a contradiction.
iii) If

$$
\left\{\begin{array}{l}
(\lambda-2) k+b c B^{2}=0 \\
b=0 \\
\lambda=1
\end{array}\right.
$$

we obtain $k=0$. Then (12) gives $\gamma^{\prime \prime}=0$ and $\alpha^{\prime \prime}=0$, a contradiction.
iv) If

$$
\left\{\begin{array}{l}
\lambda-1-b \alpha^{2}=0 \\
\lambda-1+c \gamma^{2}=0
\end{array}\right.
$$

we deduce that α, γ are both constant functions, and so, $\gamma^{\prime \prime}=0$ and $\alpha^{\prime \prime}=0$, a contradiction.
v) If $b=0, c=0$ and $\lambda=1$, Equation (11) writes as

$$
\left\{\begin{array}{l}
\gamma^{\prime 2}=k \gamma^{2} \tag{13}\\
\alpha^{\prime 2}=k \alpha^{2}
\end{array}\right.
$$

The equations (13) have the following solutions

$$
\alpha(v)=k_{1} e^{\sqrt{k} v}, \gamma(u)=k_{2} e^{\sqrt{k} u}, k>0,
$$

where $k_{1}, k_{2} \in \mathbb{R}$ are integration constants.
Hence

$$
g(v)=\lambda_{1} e^{\sqrt{k} v}-\frac{A}{B}, f(u)=\lambda_{2} e^{\sqrt{k} u}-\frac{A}{B}, k>0 .
$$

Therefore, we have the following:
Theorem 6. Let M^{2} be a $T H$-surface in \mathbb{E}_{1}^{3}. If M^{2} is minimal surface, then M^{2} can be parameterized as

$$
r(u, v)=(u, v, A(f(u)+g(v))+B f(u) g(v)),
$$

where

1) either $f(u)=-\frac{A}{B}$ and $g(v)$ is a smooth function in v.
2) $g(v)=-\frac{A}{B}$ and $f(u)$ is a smooth function in u.
3) $f(u)=\lambda_{1} u+\lambda_{2}$ and $g(v)=\lambda_{3} \operatorname{coth}\left(\lambda_{4} v+\lambda_{5}\right)-\lambda_{6}, \lambda_{i} \in \mathbb{R}$.
4) $f(u)=\frac{1}{\lambda} \tan \left(\lambda_{1} u+\lambda_{2}\right)-\frac{A}{B}, \lambda_{1}, \lambda_{2} \in \mathbb{R}$ and $g(v)=\delta_{5} v+\delta_{6}, \delta_{i} \in \mathbb{R}$.
5) $f(u)=\lambda_{2} e^{\sqrt{k} u}-\frac{A}{B}$ and $g(v)=\lambda_{1} e^{\sqrt{k} v}-\frac{A}{B}$.

Let M^{2} be a TH-surface in \mathbb{E}_{1}^{3} parameterized by a patch

$$
r(u, v)=(A(f(u)+g(v))+B f(u) g(v), u, v),
$$

where A and B are non-zero real numbers.
So

$$
r_{u}=\left(f^{\prime} \alpha, 1,0\right), \quad r_{v}=\left(g^{\prime} \gamma, 0,1\right)
$$

where $\alpha=A+B g$ and $\gamma=A+B f$.
We have

$$
E=\frac{-\gamma^{\prime 2} \alpha^{2}+B^{2}}{B^{2}}, F=-\frac{\alpha \gamma \alpha^{\prime} \gamma^{\prime}}{B^{2}}, G=\frac{-\gamma^{2} \alpha^{\prime 2}+B^{2}}{B^{2}}
$$

The coefficients of the second fundamental form on M^{2} are obtained by

$$
L=\frac{\alpha \gamma^{\prime \prime}}{B W}, \quad M=\frac{\alpha^{\prime} \gamma^{\prime}}{B W}, \quad N=\frac{\gamma \alpha^{\prime \prime}}{B W}
$$

Then M^{2} is a minimal surface if and only if

$$
\begin{equation*}
\alpha \gamma^{\prime \prime}\left(B^{2}-\alpha^{\prime 2} \gamma^{2}\right)+2 \alpha \gamma \alpha^{\prime 2} \gamma^{\prime 2}-\gamma \alpha^{\prime \prime}\left(\gamma^{\prime 2} \alpha^{2}-B^{2}\right)=0 \tag{14}
\end{equation*}
$$

where $\alpha=A+B g$ and $\gamma=A+B f$.
Using the same algebraic techniques as in the case of surfaces (1), we get:
Theorem 7. Let M^{2} be a TH-surface in \mathbb{E}_{1}^{3}. If M^{2} is minimal surface, then M^{2} can be parameterized as

$$
r(u, v)=(A(f(u)+g(v))+B f(u) g(v), u, v)
$$

where

1) either $f(u)=\frac{\zeta}{B} u+\alpha$ and $g(v)=-\frac{1}{\zeta} \operatorname{coth}\left(\lambda_{3} v+\lambda_{4}\right)-\frac{A}{B}$.
2) $f(u)=-\frac{A}{B}$ and $g(v)$ is a smooth function in v.
3) $g(v)=-\frac{A}{B}$ and $f(u)$ is a smooth function in u.
4) $\operatorname{or} g(v)=\frac{\delta}{B} v+\mu$ and $f(u)=-\frac{1}{\delta} \operatorname{coth}\left(\lambda_{1} u+\lambda_{2}\right)-\frac{A}{B}$.

4. TH-surfaces with zero Gaussian curvature in \mathbb{E}_{1}^{3}

A non-degenerate surface in \mathbb{E}_{1}^{3} is called flat, if its Gaussian curvature vanishes identically.
A surface in \mathbb{E}_{1}^{3} parameterized by (1), after eliminating f, g and their derivatives, has Gaussian curvature

$$
K=g_{L}(N, N) \frac{\alpha \gamma \alpha^{\prime \prime} \gamma^{\prime \prime}-\gamma^{\prime 2} \alpha^{\prime 2}}{B^{2} W^{4}}
$$

Suppose that M^{2} has zero Gaussian curvature. Then we have

$$
\begin{equation*}
\alpha \gamma \alpha^{\prime \prime} \gamma^{\prime \prime}-\gamma^{\prime 2} \alpha^{\prime 2}=0 \tag{15}
\end{equation*}
$$

Case 1. Let $\gamma^{\prime}=0$. In this case γ is a constant function $\gamma(u)=u_{0}$ and the parametrization of (1) writes as

$$
r(u, v)=\left(u, v, \delta_{1} g(v)+\delta_{2}\right) ; \delta_{1}, \delta_{2} \in \mathbb{R}
$$

This means that M^{2} is a cylindrical surface with base curve a plane curve in the $v z-$ plane.
Case 2. Let $\alpha^{\prime}=0$. In this case α is a constant function $\alpha(v)=v_{0}$ and the parametrization of (1) writes as

$$
r(u, v)=\left(u, v, \delta_{3} f(u)+\delta_{4}\right) ; \delta_{3}, \delta_{4} \in \mathbb{R}
$$

This means that M^{2} is a cylindrical surface with base curve a plane curve in the $u z-$ plane.
Case 3. Let $\gamma^{\prime \prime}=0$ and $\gamma^{\prime} \neq 0$. Then $\gamma(u)=\lambda_{1} u+\lambda_{2},\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{R} \backslash\{0\} \times \mathbb{R}$. Moreover, (15) gives $\alpha^{\prime}=0$ and $\alpha(v)=v_{0}$ is a constant function. Now M^{2} is the plane of equation $z(u, v)=\lambda_{3} u+\lambda_{4} ; \lambda_{3}, \lambda_{4} \in \mathbb{R}$.
Case 4. Let $\alpha^{\prime \prime}=0$ and $\alpha^{\prime} \neq 0$. Then $\alpha(v)=\lambda v+\delta_{1},\left(\lambda, \delta_{1}\right) \in \mathbb{R} \backslash\{0\} \times \mathbb{R}$. Moreover, (15) gives $\gamma^{\prime}=0$ and $\gamma(u)=u_{0}$ is a constant function. Now M^{2} is the plane of equation $z(u, v)=\lambda_{5} u+\lambda_{6} ; \lambda_{5}, \lambda_{6} \in \mathbb{R}$.

Case 5. Let $\gamma^{\prime \prime} \neq 0$ and $\alpha^{\prime \prime} \neq 0$.
Equation (15) writes as

$$
\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}=\frac{\alpha^{\prime 2}}{\alpha \alpha^{\prime \prime}}
$$

Therefore, there exists a real number $\lambda \in \mathbb{R} \backslash\{0\}$ uch that

$$
\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}=\lambda=\frac{\alpha^{\prime 2}}{\alpha \alpha^{\prime \prime}}
$$

Integrate these equations

$$
\left\{\begin{array}{l}
\gamma^{\prime}=k_{1} \gamma^{\lambda} \tag{16}\\
\alpha^{\prime}=k_{2} \alpha^{\frac{1}{\lambda}}
\end{array}\right.
$$

where k_{1} and k_{2} are constants of integration.
i) If $\lambda=1$, the general solution of (16) is given by

$$
\left\{\begin{array}{l}
\gamma(u)=\lambda_{1} e^{k_{1} u} \\
\alpha(v)=\lambda_{2} e^{k_{2} v}
\end{array}\right.
$$

where λ_{1} and λ_{2} are constants of integration.
Hence

$$
\left\{\begin{array}{l}
f(u)=\lambda_{3} e^{k_{1} u}+\lambda_{4} \\
g(v)=\lambda_{5} e^{k_{2} v}+\lambda_{6}
\end{array}\right.
$$

where $\lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6} \in \mathbb{R}$.
ii) If $\lambda \neq 1$, the general solution of (16) is given by

$$
\left\{\begin{array}{l}
\gamma(u)=\left((1-\lambda) k_{1} u+c_{1}\right)^{\frac{1}{1-\lambda}} \\
\alpha(v)=\left(\left(\frac{\lambda-1}{\lambda}\right) k_{2} v+c_{2}\right)^{\frac{\lambda}{\lambda-1}}
\end{array}\right.
$$

where c_{1} and c_{2} are constants of integration.
Hence

$$
\left\{\begin{array}{l}
f(u)=c_{3}\left((1-\lambda) k_{1} u+c_{1}\right)^{\frac{1}{1-\lambda}}+c_{4} \\
g(v)=c_{5}\left(\left(\frac{\lambda-1}{\lambda}\right) k_{2} v+c_{2}\right)^{\frac{\lambda}{\lambda-1}}+c_{6}
\end{array}\right.
$$

where $c_{3}, c_{4}, c_{5}, c_{6} \in \mathbb{R}$.
Theorem 8. Let M^{2} be a TH-surface in \mathbb{E}_{1}^{3} with constant Gauss curvature K. If M^{2} has zero Gaussian curvature, then M^{2} can be parameterized as

$$
r(u, v)=(u, v, z(u, v)=A(f(u)+g(v))+B f(u) g(v))
$$

where

1) either $f(u)=\lambda_{1} e^{k_{1} u}+\lambda_{2}$ and $g(v)=\lambda_{3} e^{k_{2} v}+\lambda_{4}$,
2) or $f(u)=\mu_{1} u+\mu_{2}$ and $g(v)=\mu_{3}$,
3) $\operatorname{or} g(v)=v_{1} v+v_{2}$ and $f(u)=v_{3}$,
4) or $f(u)=\zeta_{1}\left((1-\lambda) k_{1} u+\zeta_{2}\right)^{\frac{1}{1-\lambda}}+\zeta_{3}$ and $g(v)=\zeta_{4}\left(\left(\frac{\lambda-1}{\lambda}\right) k_{2} v+\zeta_{5}\right)^{\frac{\lambda}{\lambda-1}}+\zeta_{6}$.
5. Minimal TH-surfaces in \mathbb{E}^{3}

Let M^{2} be a TH-surface in the Euclidean 3-space \mathbb{E}^{3}. Then, M^{2} is parameterized by

$$
r(u, v)=(u, v, A(f(u)+g(v))+B f(u) g(v))
$$

where A and B are non-zero real numbers.
We have the natural frame $\left\{r_{u}, r_{v}\right\}$ given by

$$
r_{u}=\left(1,0, f^{\prime} \alpha\right), \quad r_{v}=\left(0,1, g^{\prime} \gamma\right)
$$

where $\alpha=A+B g$ and $\gamma=A+B f$.
From this, the unit normal vector field N of M^{2} is given by

$$
N=\frac{1}{W}\left(-\alpha f^{\prime},-\gamma g^{\prime}, 1\right)
$$

where $W=\sqrt{1+f^{\prime 2} \alpha^{2}+g^{\prime 2} \gamma^{2}}$.
The coefficients of the first fundamental form of M^{2} are given by

$$
E=1+f^{\prime 2} \alpha^{2}, \quad G=1+g^{\prime 2} \gamma^{2}, \quad F=f^{\prime} g^{\prime} \alpha \gamma
$$

The coefficients of the second fundamental form of the surface are

$$
L=\frac{\alpha f^{\prime \prime}}{W}, \quad M=\frac{B f^{\prime} g^{\prime}}{W}, \quad N=\frac{\gamma g^{\prime \prime}}{W} .
$$

Hence, the mean curvature H and the Gaussian curvature K are given by, respectively

$$
\begin{gather*}
H=\frac{\alpha f^{\prime \prime}\left(1+g^{\prime 2} \gamma^{2}\right)-2 B \alpha \gamma f^{\prime 2} g^{\prime 2}+\gamma g^{\prime \prime}\left(1+f^{\prime 2} \alpha^{2}\right)}{2 W^{3}} \tag{17}\\
K=\frac{\alpha \gamma f^{\prime \prime} g^{\prime \prime}-B^{2} f^{\prime 2} g^{\prime 2}}{E G-F^{2}} \tag{18}
\end{gather*}
$$

If the surface is minimal, that is, $H=0$ on M^{2}, we have from (17)

$$
\alpha f^{\prime \prime}\left(1+g^{\prime 2} \gamma^{2}\right)-2 B \alpha \gamma f^{\prime 2} g^{\prime 2}+\gamma g^{\prime \prime}\left(1+f^{\prime 2} \alpha^{2}\right)=0
$$

The previous equation may be rewritten as

$$
\begin{equation*}
\alpha \gamma^{\prime \prime}\left(B^{2}+\alpha^{\prime 2} \gamma^{2}\right)-2 \alpha \gamma \alpha^{\prime 2} \gamma^{\prime 2}+\gamma \alpha^{\prime \prime}\left(B^{2}+\gamma^{\prime 2} \alpha^{2}\right)=0 . \tag{19}
\end{equation*}
$$

Since the roles of α and γ in (19) are symmetric, we only discuss the cases according to the function γ. We distinguish cases.
Case 1. Let $\gamma^{\prime}=0$. In this case (19) gives $B^{2} \gamma \alpha^{\prime \prime}=0$.
i) If $\gamma=0$, then $f(u)=-\frac{A}{B}, M^{2}$ is the horizontal plane of equation $z=-\frac{A^{2}}{B}$.
ii) If $\alpha^{\prime \prime}=0$, then $g(v)=a v+b, a, b \in \mathbb{R}$, and $f(u)=c, c \in \mathbb{R}, M^{2}$ is the plane of equation $z=c_{1} v+c_{2}, c_{1}$, $c_{2} \in \mathbb{R}$.

Case 2. Let $\gamma^{\prime \prime}=0$ and $\gamma^{\prime} \neq 0$, and by symmetry, $\alpha^{\prime} \neq 0$. Then $\gamma(u)=\lambda u+\delta_{1},(\lambda, \delta) \in \mathbb{R}^{*} \times \mathbb{R}$ and α is a solution of the following ODE

$$
\begin{equation*}
-2 \lambda^{2} \alpha \alpha^{\prime 2}+\alpha^{\prime \prime}\left(B^{2}+\lambda^{2} \alpha^{2}\right)=0 \tag{20}
\end{equation*}
$$

Then the general solution of (20) is given by

$$
\alpha(v)=\frac{B}{\lambda} \tan \left(\lambda_{1} v+\lambda_{2}\right), \lambda_{1}, \lambda_{2} \in \mathbb{R}
$$

Hence

$$
g(v)=\frac{1}{\lambda} \tan \left(\lambda_{1} v+\lambda_{2}\right)-\frac{A}{B}, \lambda_{1}, \lambda_{2} \in \mathbb{R}
$$

So, the parametrization of M^{2} can be written in the form

$$
r(u, v)=\left(u, v, \lambda_{3} u+\delta_{2}+\frac{A}{\lambda} \tan \left(\lambda_{1} v+\lambda_{2}\right)-\frac{A^{2}}{B}+B\left(\lambda_{3} u+\delta_{2}\right)\left(\frac{1}{\lambda} \tan \left(\lambda_{1} v+\lambda_{2}\right)-\frac{A}{B}\right)\right)
$$

where $\left(\lambda_{3}, \delta_{2}\right) \in \mathbb{R}^{*} \times \mathbb{R}$.
Case 3. Let $\gamma^{\prime \prime} \neq 0$. By symmetry in the discussion of the case, we also suppose $\alpha^{\prime \prime} \neq 0$. If we divide (19) by $\alpha \gamma \alpha^{\prime 2} \gamma^{\prime 2}$, we obtain

$$
\frac{B^{2} \gamma^{\prime \prime}}{\gamma \alpha^{\prime 2} \gamma^{\prime 2}}+\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}+\frac{B^{2} \alpha^{\prime \prime}}{\alpha \alpha^{\prime 2} \gamma^{\prime 2}}+\frac{\alpha \alpha^{\prime \prime}}{\alpha^{\prime 2}}-2=0
$$

Thus, after a derivation with respect to u, followed by a derivation with respect to v, we obtain

$$
\left(\frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}\right)_{, u}\left(\frac{1}{\alpha^{\prime 2}}\right)_{, v}+\left(\frac{\alpha^{\prime \prime}}{\alpha \alpha^{\prime 2}}\right)_{, v}\left(\frac{1}{\gamma^{\prime 2}}\right)_{, u}=0 .
$$

Hence we deduce the existence of a real number $k \in \mathbb{R}$ such that

$$
\left\{\begin{array}{c}
\left(\frac{\gamma^{\prime \prime}}{\gamma \gamma^{\prime 2}}\right)_{, u}=k\left(\frac{1}{\gamma^{\prime 2}}\right)_{, u} \tag{21}\\
\left(\frac{\alpha^{\prime \prime}}{\alpha \alpha^{\prime 2}}\right)_{, v}=-k\left(\frac{1}{\alpha^{\prime 2}}\right)_{, v}
\end{array}\right.
$$

The first equation of (21) can integrate obtaining

$$
\begin{equation*}
\gamma^{\prime \prime}=\gamma\left(k+b_{1} \gamma^{\prime 2}\right) \tag{22}
\end{equation*}
$$

From the second equation in (21), we obtain

$$
\begin{equation*}
\alpha^{\prime \prime}=-\alpha\left(k+b_{2} \alpha^{\prime 2}\right) \tag{23}
\end{equation*}
$$

Substituting the above in (19), we get

$$
\alpha \gamma\left(\left(k+b_{1} \gamma^{\prime 2}\right)\left(B^{2}+\alpha^{\prime 2} \gamma^{2}\right)-2 \alpha^{\prime 2} \gamma^{\prime 2}-\left(k+b_{2} \alpha^{\prime 2}\right)\left(B^{2}+\gamma^{\prime 2} \alpha^{2}\right)\right)=0
$$

If we simplify by $\alpha \gamma$ and then we divide by $\alpha^{\prime 2} \gamma^{\prime 2}$, we get

$$
\frac{k \gamma^{2}-b_{2} B^{2}}{\gamma^{\prime 2}}-2+b_{1} \gamma^{2}=\frac{k \alpha^{2}-b_{1} B^{2}}{\alpha^{\prime 2}}+b_{2} \alpha^{2}
$$

Hence, we deduce the existence of a real number $\lambda \in \mathbb{R}$ such that

$$
\left\{\begin{array}{l}
\gamma^{\prime 2}=\frac{k \gamma^{2}-b_{2} B^{2}}{\lambda+2-b_{1} \gamma^{2}} \tag{24}\\
\alpha^{\prime 2}=\frac{k \alpha^{2}-b_{1} B^{2}}{\lambda-b_{2} \alpha^{2}}
\end{array}\right.
$$

Differentiating with respect to u and v, respectively, we have

$$
\left\{\begin{array}{l}
\gamma^{\prime \prime}=\frac{\gamma\left(\lambda k+2 k-b_{1} b_{2} B^{2}\right)}{\left(\lambda+2-b_{1} \gamma^{2}\right)^{2}} \tag{25}\\
\alpha^{\prime \prime}=\frac{\alpha\left(\lambda k-b_{1} b_{2} B^{2}\right)}{\left(\lambda-b_{2} \alpha^{2}\right)^{2}} .
\end{array}\right.
$$

Let us compare these expressions of $\alpha^{\prime \prime}$ and $\gamma^{\prime \prime}$ with those ones that appeared in (22) and (23) and replace the value of $\gamma^{\prime 2}$ and $\alpha^{\prime 2}$ obtained in (24). We get

$$
\begin{gathered}
\left(\lambda k+2 k-b_{1} b_{2} B^{2}\right)\left(1+\lambda-b_{1} \gamma^{2}\right)=0 \\
\left(\lambda k-b_{1} b_{2} B^{2}\right)\left(\lambda-1-b_{2} \alpha^{2}\right)=0
\end{gathered}
$$

We discuss all possibilities.
i) If $\lambda k+2 k-b_{1} b_{2} B^{2}=0$ and $\lambda k-b_{1} b_{2} B^{2}=0$, then $k=0$ and $b_{1} b_{2}=0$. Then (25) gives $\gamma^{\prime \prime}=0$ and $\alpha^{\prime \prime}=0$, a contradiction.
ii) If $\lambda k+2 k-b_{1} b_{2} B^{2}=0, \lambda=1$ and $b_{2}=0$, we obtain $k=0$. Then (25) gives $\gamma^{\prime \prime}=0$ and $\alpha^{\prime \prime}=0$, a contradiction.
iii) If $\lambda k-b_{1} b_{2} B^{2}=0, \lambda=-1$ and $b_{1}=0$, we obtain $k=0$. Then (25) gives $\gamma^{\prime \prime}=0$ and $\alpha^{\prime \prime}=0$, a contradiction.
iv) If $1+\lambda-b_{1} \gamma^{2}=0$ and $\lambda-1-b_{2} \alpha^{2}=0$, we deduce that α, γ are both constant functions, and so, $\gamma^{\prime \prime}=0$ and $\alpha^{\prime \prime}=0$, a contradiction.

Therefore, we have the following:

Theorem 9. Let M^{2} be a $T H$-surface in \mathbb{E}^{3}. If M^{2} is minimal surface, then M^{2} is plane or parameterized as

$$
r(u, v)=(u, v, A(f(u)+g(v))+B f(u) g(v))
$$

where
i) either $f(u)=\frac{\lambda_{1}}{B} u+\frac{\lambda_{2}-A}{B}$ and $g(v)=\frac{1}{\lambda_{1}} \tan \left(\lambda_{3} v+\lambda_{4}\right)-\frac{A}{B}$ or
ii) $f(u)=\frac{1}{\lambda_{1}} \tan \left(\lambda_{2} u+\lambda_{3}\right)-\frac{A}{B}$ and $g(v)=\frac{\lambda_{1}}{B} v+\frac{\lambda_{4}-A}{B}$.

6. TH-surfaces with zero Gaussian curvature in \mathbb{E}^{3}

A surface in Euclidean 3-space parameterized by (1) has Gaussian curvature

$$
K=\frac{\alpha \gamma f^{\prime \prime} g^{\prime \prime}-B^{2} f^{\prime 2} g^{\prime 2}}{E G-F^{2}}
$$

Hence that if $K=0$, then

$$
\begin{equation*}
\alpha \gamma \alpha^{\prime \prime} \gamma^{\prime \prime}-\gamma^{\prime 2} \alpha^{\prime 2}=0 \tag{26}
\end{equation*}
$$

Since the roles of the function γ and α are symmetric in (26), we discuss the different cases according the function γ.
Case 1. Let $\gamma^{\prime}=0$. In this case γ is a constant function $\gamma(u)=u_{0}$ and the parametrization of (1) writes as

$$
r(u, v)=\left(u, v, \delta_{1} g(v)+\delta_{2}\right)
$$

This means that M^{2} is a cylindrical surface with base curve a plane curve in the $v z-$ plane.
Case 2. Let $\gamma^{\prime \prime}=0$ and $\gamma^{\prime} \neq 0$. Then $\gamma(u)=\lambda u+\delta_{1},(\lambda, \delta) \in \mathbb{R}^{*} \times \mathbb{R}$. Moreover, (26) gives $\alpha^{\prime}=0$ and $\alpha(v)=$ v_{0} is a constant function. Now M^{2} is the plane of equation $z(u, v)=\lambda u+\delta_{1}, \lambda, \delta_{1} \in \mathbb{R}$.
Case 3. Let $\gamma^{\prime \prime} \neq 0$. By the symmetry on the arguments, we also suppose $\alpha^{\prime \prime} \neq 0$.
Equation (26) writes as

$$
\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}=\frac{\alpha^{\prime 2}}{\alpha \alpha^{\prime \prime}}
$$

Therefore, there exists a real number $\lambda \in \mathbb{R}^{*}$ such that

$$
\frac{\gamma \gamma^{\prime \prime}}{\gamma^{\prime 2}}=\lambda=\frac{\alpha^{\prime 2}}{\alpha \alpha^{\prime \prime}}
$$

Integrate these equations

$$
\left\{\begin{array}{l}
\gamma^{\prime}=k_{1} \gamma^{\lambda} \tag{27}\\
\alpha^{\prime}=k_{2} \alpha^{\frac{1}{\lambda}}
\end{array}\right.
$$

where k_{1} and k_{2} are constants of integration.
i) If $\lambda=1$, the general solution of (27) is given by

$$
\left\{\begin{array}{l}
\gamma(u)=\lambda_{1} e^{k_{1} u} \\
\alpha(v)=\lambda_{2} e^{k_{2} v}
\end{array}\right.
$$

where λ_{1} and λ_{2} are constants of integration.
Hence

$$
\left\{\begin{array}{l}
f(u)=\lambda_{3} e^{k_{1} u}+\lambda_{4} \\
g(v)=\lambda_{5} e^{k_{2} v}+\lambda_{6}
\end{array}\right.
$$

where $\lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6} \in \mathbb{R}$.
i) If $\lambda \neq 1$, the general solution of (27) is given by

$$
\left\{\begin{array}{l}
\gamma(u)=\left((1-\lambda) k_{1} u+c_{1}\right)^{\frac{1}{1-\lambda}} \\
\alpha(v)=\left(\left(\frac{\lambda-1}{\lambda}\right) k_{2} v+c_{2}\right)^{\frac{\lambda}{\lambda-1}}
\end{array}\right.
$$

where c_{1} and c_{2} are constants of integration.
Hence

$$
\left\{\begin{array}{l}
f(u)=c_{3}\left((1-\lambda) k_{1} u+c_{1}\right)^{\frac{1}{1-\lambda}}+c_{4} \\
g(v)=c_{5}\left(\left(\frac{\lambda-1}{\lambda}\right) k_{2} v+c_{2}\right)^{\frac{\lambda}{\lambda-1}}+c_{6}
\end{array}\right.
$$

where $c_{3}, c_{4}, c_{5}, c_{6} \in \mathbb{R}$.
Theorem 10. Let M^{2} be a TH-surface in Euclidean $3-$ space \mathbb{E}^{3} with constant Gauss curvature K. Then $K=0$. Furthermore, the surface is plane or is a cylindrical surface over a plane curve or parameterized as

$$
r(u, v)=(u, v, A(f(u)+g(v))+B f(u) g(v))
$$

where
i) either $f(u)=\lambda_{3} e^{k_{1} u}+\lambda_{4}$ and $g(v)=\lambda_{5} e^{k_{2} v}+\lambda_{6}$ or
ii) $f(u)=c_{3}\left((1-\lambda) k_{1} u+c_{1}\right)^{\frac{1}{1-\lambda}}+c_{4}$ and $g(v)=c_{5}\left(\left(\frac{\lambda-1}{\lambda}\right) k_{2} v+c_{2}\right)^{\frac{\lambda}{\lambda-1}}+c_{6}$.

Acknowledgments: The authors would like to express their thanks to the referee for his useful remarks.
Author Contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Conflicts of Interest: "The authors declare no conflict of interest."

References

[1] Liu, H. (1999). Translation surfaces with constant mean curvature in 3-dimensional spaces. Journal of Geometry, 64, 141-149.
[2] Liu, H. (1993). Translation surfaces with dependent Gaussian and mean curvature in 3-dimensional spaces. (Chinese) Journal of Northeastern University, 14, 88-93.
[3] Dillen, F., Verstraelen, L., \& Zafindratafa, G. (1991). A generalization of the translation surfaces of Scherk. Differential Geometry in honor of Radu Rosca, K. U. L., . 107-109.
[4] Sağlam, D., \& Sabuncuoğlu, A. (2011). Minimal homothetical lightlike hypersurfaces of semi-Euclidean spaces. Kuwait Journal of Science and Engineering, 38, 1-14.
[5] Jiu, L., \& Sun, H. (2007). On minimal homothetical hypersurfaces. Colloq. Math., 109, 239-249.
[6] López, R. (2011). Minimal translation surfaces in hyperbolic space. Beiträge zur Algebra und Geometrie, 52, 105-112.
[7] Meng, H., \& Liu, H. (2009). Factorable surfaces in 3-Minkowski space. Bulletin of the Korean Mathematical Society, 46, 155-169.
[8] Yu, Y., \& Liu, H. (2007). The factorable minimal surfaces. Proceedings of the Eleventh International Workshop on Differential Geometry, Kyungpook National University, 33-39.
[9] Güler, E., Yayli, Y., ÇelikS, S., \& Hacisalihoğlu, H. H. (2015). Algebraic surfaces of the Laplace-Beltrami operators of the TF-type surfaces. arXiv:1505.04164v1.
[10] Dillen, F., Goemans, W., \& Van de Woestyne, I. (2008). Translation surfaces of Weingarten type in 3-space. Bulletin of the Transilvania University of Brasov(Series. III), 50, 109-122.
[11] López, R., \& Moruz, M. (2015). Translation and homothetical surfaces in Euclidean space with constant curvature. ,Journal of the Korean Mathematical Society 52, 523-535.
[12] Hoffman, D. (1987). The computer-aided discovery of new embedded minimal surfaces. The Mathematical Intelligencer, 9, 8-21.
(C) 2019 by the authors; licensee PSRP, Lahore, Pakistan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

