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Abstract: In the 3-dimensional Euclidean space E3 and Lorentzian-Minkowski space E3, a translation and
homothetical TH-surface is parameterized z(u,v) = A(f(u) + g(v)) + Bf (1)g(v), where f and g are smooth
functions and A, B are non-zero real numbers. In this paper, we define TH-surfaces in the 3-dimensional
Euclidean space E® and Lorentzian-Minkowski space E} and completely classify minimal or flat TH-surfaces.
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1. Introduction

he theory of minimal surfaces has found many applications in differential geometry and also in physics.
T In [1] and [2], H. Liu gave some classification results for translation surfaces. A minimal translation
hypersurface in a Euclidean space is either locally a hyperplane or an open part of a cylinder on Scherk’s
surfaces, as proved in Dillen et al. [3]. In [1] was generalized to translation surfaces with constant mean
curvature and constant Gaussian curvature in E®. Saglam and Sabuncuoglu proved that every homothetical
lightlike hypersurface in a semi-Euclidean Eg”rz space is minimal [4]. Jiu and Sun studied n— dimensional
minimal homothetical hypersurfces and gave their classification [5]. R. Lépez [6] studied translation surfaces in
the 3-dimensional hyperbolic space and classified minimal translation surfaces. Meng and Liu [7] considered
factorable surfaces along two lightlike directions and spacelike-lightlike directions in Minkowski 3-space E3
and they also gave some classifcation theorems. In [8], Yu and Liu studied the factorable minimal surfaces in
E% and E3, and gave some classification theorems. Giiler et al. [9] defined by translation and homothetical
TH-surfaces in the three dimensional Euclidean space.

2. Preliminaries

Let E3 be a 3-dimensional Minkowski space with the scalar product of index 1 given by
gL = ds* = —dx® +dy* + dz*,

where (x,y,z) is a rectangular coordinate system of E3.

A vector V of E? is said to be timelike if g;.(V, V) < 0, spacelike if g1 (V,V) > 0 or V = 0 and lightlike
ornullif g/ (V,V) =0and V # 0. A surface in EJ is spacelike, timelike or lightlike if the tangent plane at any
point is spacelike, timelike or lightlike, respectively.

The Lorentz scalar product of the vectors V and W is defined by g1 (V, W) = —vjwq + vaw; + v3ws, where
V= ('01,02, 03), W= (wl,wz,wg) S E%

For any V, W € E3, the pseudo-vector product of V and W is defined as follows:

VALW = (= vaws + 03wy, 031 — 01W3 , 01Wy — VW1 ).
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We denote a surface M? in Ei’ by
r(u,v) = (r1(u,0), r2(u,v), r3(u,v)).

Definition 1 ([10]). A translation surface in Minkowski 3-space is a surface that is parameterized by either

r(u,v) = (u, v, flu)+g(v)) if L is timelike,
r(w,v) = (f(u)+g(), u, v) if L is spacelike,
r(u,0) = (u+v, g(v), f(u)+0) if Lis lightlike,

with L the intersection of the two planes that contain the curves that generate the surface.

Theorem 2 ([11]). i) The only translation surfaces with constant Gauss curvature K = 0 are cylindrical surfaces.
ii) There are no translation surfaces with constant Gauss curvature K # 0 if one of the generating curves is planar.

Definition 3. A homothetical (factorable) surface M? in the 3-dimensional Lorentzian space E% is a surface
that is a graph of a function

z(u, v) = f(u)g(v),

where f: I CR — Rand g: ] C R — R are two smooth functions.
Theorem 4 ([11]). Planes and helicoids are the only minimal homothetical surfaces in Euclidean space.

Accordingly, we define an extended surface in E? using definitions as above and called it TH-type surface
as follows [9]:

Definition 5. A surface M? in the 3-dimensional Lorentzian space E3 is a TH-surface if it can be parameterized
either by a patch

r(u, v) = (u, v, A(f(u) +g(v)) + Bf (u)g(v)) ey
or

r(u, v) = (A(f(u) +8(v)) + Bf ()g(v), u, v), @

where A and B are non-zero real numbers.

Remark 1. i) If A # 0 and B = 0 in (1), then surface is a translation surface.
ii) If A = 0and B # 0in (1), then surface is a homothetical (factorable) surface.

Let N denotes the unit normal vector field of M? and put g1 (N,N) = ¢ = £1,so thate = —lore = 1
according to M? is endowed with a Lorentzian or Riemannian metric, respectively.
The mean curvature and the Gauss curvature are

EN + GL —2FM LN — M?
H: K: —_—
2Ec - K= aNN)Fe—p

where E, G, F are the coefficients of the first fundamental form, L, M, N are the coefficients of the second
fundamental form.

In this paper, we define TH-surfaces in the 3-dimensional Euclidean space E? and Lorentzian-Minkowski
space E3, and completely classify minimal or flat TH-surfaces.

3. Minimal TH-surfaces in Ei”

A surface M? in the 3-dimensional Lorentzian space EJ is called minimal when locally each point on the
surface has a neighborhood which is the surface of least area with respect to its boundary [12]. In 1775, ]. B.
Meusnier showed that the condition of minimality of a surface in E? is equivalent with the vanishing of its
mean curvature function, H = 0.

Let z = f(x,y) define a graph M? in the Euclidean 3-space E3. If M? is minimal, the function f satisfies

(L4 ') frr = 2fyfufy + U+ f2) fyy =0, ®)
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which was obtained by J. L. Lagrange in 1760.
Let M? be a TH-surface in E parameterized by a patch

r(u, v) = (u, v, A(f(u) + g(v)) + Bf (u)g(v)),

where A and B are non-zero real numbers.
So

rll = (1/ 0/ f,a)/ rU = (0/ 1/ g/’)/)/

wherew = A+ Bgand v = A + Bf.
After eliminating f" and ¢’ we find

’)//2062 _ B2 P wyn

/’Y, _ ,),20612_’_32
B2 7 B7 0 C° '

E= 2

The unit normal vector is given by
N = i(uc'y’, — &', B),
WB
where W? = B~2¢; (N, N)(7"?a? — «’?>4? — B?) and

1 M2 is spacelike (7?4 — a’?9? — B2 > 0),

N,N) = =
gu(N,N) =¢ ¢ { —1 M? is timelike (7?a? — a">9? — B> < 0).

The constant ¢ is called the sign of M2.
The coefficients of the second fundamental form are given by

7 1

w7y o'y r
L = = = .
BW’ BW’ N BW
The expression of H is
g o BAaf"(1+87%9%) —2Bayf?g” + 98" (fa® — 1))
2W3
B DC’yN(BZ + “/272) o 2“70(/27/2 + ,w‘//(,.yaaz o B2) (4)
B 2BW3 '
Then M? is a minimal surface if and only if
wy”(Bz + a/Z,YZ) _ 2“7“/27/2 + 70‘//(7/2“2 _ BZ) =0. (5)
We distinguish the following cases.
Case 1. Let o/ = 0. In this case (5) gives ya”" = 0.
i) If y =0, then f(u) = — %, M? is the horizontal plane of equation z = — ATE.

ii) If «” = 0, then a(v) = a0+ by, a1, b1 € R, and y(u) = ¢1, 1 € R, M2 is the plane of equation
Z =cpv+c3, ¢, c3 €R.
Case 2. Let «’ = 0. In this case (5) gives 7"a = 0.
i) If « = 0, then g(v) = —4, M? is the horizontal plane of equation z = —%3.
ii) If v/ = 0, then y(u) = ayu +by, a3, by € R, and a(v) = ¢4, ¢4 € R, M? is the plane of equation
Z = cs5U + Cg, 5, ¢ € R.

Case 3. Let v = 0and o/ # 0. Then y(u) = Au+46, (A, ) € R\ {0} x R and « is a solution of the following
ODE
—2A%aa”? + & (A\%a* — B?) = 0. (6)

Then the general solution of (6) is given by

B
a(v) = 3 coth(AMv+ Ap), A, Ay € R
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Hence 1 4
g(’()) = 3 coth(/\1v+)\2) — B A, Ay € R

Case 4. Leta” = 0and a’ # 0. Then a(v) = Av+ 4, (A, 8) € R\ {0} x R and 7 is a solution of the following
ODE
= 222972 +9" (A% + B?) = 0. @)

Then the general solution of (7) is given by

B
'y(u) = Xtan(/\lu+}\2), A1, A € R

Hence 1 A
flu) = 0 tan(Aqu + Ap) — B A, Ay € R

Case 5. Let 7 # 0. By symmetry in the discussion of the case, we also suppose a” # 0. If we divide (5) by

aya'?y'?, we obtain
BZ’Y// ’Y’)/// lexu !
Y22 72 B w272 + w2 2=0.

Thus, after a derivation with respect to u, followed by a derivation with respect to v, we obtain

1 1 IXI/ 1
(), (), (), (52), o
Yy U w 0 o 0 Y U
Hence we deduce the existence of a real number k € R such that

,)// . 1

('7'7,2),1/1 =k (7/2),14 (8)

ES ey

an2 v - a2 P .

The first equation of (8) can integrate obtaining

7" =(k+cr?). ©)
From the second equation in (8), we obtain
o = a(k+ ba'?). (10)
Substituting the above in (5), we get
ay((k+cy?)(B* + a2 9%) — 2a"29"% + (k + ba'?) (v"%a* — B?)) = 0.
If we simplify by a-y and then we divide by a’29"2, we get

2 pa2 2 2
bB* — ky —572+2:CB + ka

2
77,2 o2 + ba”.

Hence, we deduce the existence of a real number A € R such that

1 _ bB*—ky?
T = )\—2+CA£2 (11)
0(,2 — cB2+ka
A—ba2 *

Differentiating with respect to # and v, respectively, we have

{ n_ _ v((A=2)k+bcB?)
= (A—2+cy?)?

DC// _ Dc(/\k+bCBz) (12)

(A—ba2)? *



Open J. Math. Sci. 2019, 3, 234-244 238

Let us compare these expressions of a” and " with those ones that appeared in (9) and (10) and replace the
values of 72 and a’? obtained in (11).
We get

(Ak 4+ beB?)(A —1—ba?) =0

(A —2)k + bcB?)(A — 1+ cy?) = 0.

We discuss all possibilities.

i) I
Ak +bcB? =0
(A —2)k+bcB? =0,
then k = 0 and bc = 0. Then (12) gives 7" = 0 and &’ = 0, a contradiction.
ii) 1f
Ak +bcB? =0
c=0
A=1,

we obtain k = 0. Then (12) gives 7"/ = 0 and &” = 0, a contradiction.
iii) If
(A —2)k+bcB> =0

we obtain k = 0. Then (12) gives v/ = 0 and &” = 0, a contradiction.
iv) If
A—=1—ba? =0
A=14+cy?=0

we deduce that a, -y are both constant functions, and so, 7"/ = 0 and a” = 0, a contradiction.
v) If b =0,c=0and A =1, Equation (11) writes as

,),/2 — k,)/Z
{ a'? = ka?. (13

The equations (13) have the following solutions
a(v) = kleﬁ”, y(u) = kze\/E”, k>0,

where ki, k; € R are integration constants.

Hence ) 4
g(v) = ApeV* - 5 fw) = AgeVh B k>0

Therefore, we have the following:

Theorem 6. Let M? be a TH-surface in E3. If M? is minimal surface, then M? can be parameterized as

r(u,0) = (u, v, A(f(u) +g(v)) + Bf (1)g(v)),

where
1) either f(u) = —4 and g(v) is a smooth function in v.
2) g(v) = —4 and f(u) is a smooth function in u.
3) f(u) = AMu+ Ay and g(v) = Azcoth(Agv + As5) — Ag, A; € R.
4) f(u) = Ltan(Mu+ A2) — 4, A1, Ay € Rand g(v) = d50 + 8, 6; € R.
5) f(u) = ApeVhu — % and g(v) = AeVio — %.

Let M? be a TH-surface in E parameterized by a patch

r(u, v) = (A(f(u) +8(v)) + Bf(u)g(v), u, v),
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where A and B are non-zero real numbers.
So

Ty = (f/IX, 1/ O)/ Ty = (g/% 0/ 1)/

wherex = A+ Bgand v = A+ Bf.

We have 12,2 2 1Al 2.2 2
E:—'y o +B/ F:_IX’)’DC’)/’G:—’)/DC +B.

BZ Bz BZ
The coefficients of the second fundamental form on M? are obtained by
DC')’// UC/')’/ 'YDCN
L = = = .
BW’ M BW’ N BW
Then M? is a minimal surface if and only if
a,)///(BZ _ 06/2’)’2) + 20(’)/06/2’)//2 _ ’)/OC//(’)/IZDCZ _ BZ) =0, (14)

where « = A + Bgand v = A + Bf.
Using the same algebraic techniques as in the case of surfaces (1), we get:

Theorem 7. Let M? be a TH-surface in E3. If M? is minimal surface, then M? can be parameterized as

r(u, v) = (A(f(u) +8(v)) + Bf (u)g(v), u, v),

where
1) either f(u) = %u +waand g(v) = —% coth(Azv + Ag) — 4.
2) f(u) = —4 and g(v) is a smooth function in v.

)

)
3) g(v) = —4 and f(u) is a smooth function in u.
4) or g(v) = $v+ pand f(u) = — L coth(Au + 1) — 4.
4. TH-surfaces with zero Gaussian curvature in E%

A non-degenerate surface in E? is called flat, if its Gaussian curvature vanishes identically.
A surface in E} parameterized by (1), after eliminating f, g and their derivatives, has Gaussian curvature

na 12,12
ayw Ty A
Suppose that M? has zero Gaussian curvature. Then we have
IX’)’(XH’)/N _ ,)//2 2 _ 0. (15)

Case 1. Let o/ = 0. In this case 7 is a constant function y(u) = 1y and the parametrization of (1) writes as
r(u,v) = (u, v, 618(v) +82); 61,62 € R.

This means that M? is a cylindrical surface with base curve a plane curve in the vz— plane.
Case 2. Let «’ = 0. In this case « is a constant function «(v) = vy and the parametrization of (1) writes as

r(u,v) = (u, v, 63f(u) + d4); 93,64 € R.

This means that M? is a cylindrical surface with base curve a plane curve in the uz— plane.

Case 3. Let v/ = 0and o/ # 0. Then y(u) = Aqu + Ay, (A1, A2) € R\ {0} x R. Moreover, (15) gives &’ = 0 and
a(v) = vy is a constant function. Now M? is the plane of equation z(u,v) = Azu + Ay; Az, Ay € R.

Case 4. Let " = 0 and &/ # 0. Then a(v) = Av+ 4y, (A, &1) € R\ {0} x R. Moreover, (15) gives 7/ = 0 and
v(u) = ug is a constant function. Now M? is the plane of equation z(u, v) = Asu + Ag; A5, Ag € R.
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Case 5. Let 7" # 0 and a” # 0.
Equation (15) writes as

,.)/,.)/// B [XIZ

7/2 - an!”

Therefore, there exists a real number A € R\ {0} uch that

7 7

Ty &
T T
Integrate these equations
Y =kt
o = kzzx%,

where ki and kj are constants of integration.

i)

If A = 1, the general solution of (16) is given by

{ Y(u) = Aqekrt

a(v) = Ayek2?,

where A1 and A; are constants of integration.
Hence

f(u) = Aze" + Ay
g(v) = Asek2? + Ag,

where A3, Ay, A5, Ag € R.
If A # 1, the general solution of (16) is given by

where ¢ and c¢; are constants of integration.
Hence

{ Fu) = e3((1 = Akyu+ )77 + 4
A

where c3, ¢4, c5, cg € R.

(16)

Theorem 8. Let M? be a TH-surface in E with constant Gauss curvature K. If M? has zero Gaussian curoature, then
M? can be parameterized as

r(u,0) = (u, v, z(u,v) = A(f(u) + g(v)) + Bf (1)g(v)),

1) either f(u) = A1k + Ay and g(v) = Azek2? 4 Ay,

)
2) or f(u) = pru + pp and g(v) = p3,
3)or g(v) =viv+vyand f(u) = v,
)

4) or f(u) = (1 = Akyu +8o) 7 + Lz and g(v) = Za((A5 koo + 7)™ + e

5. Minimal TH-surfaces in >

Let M? be a TH-surface in the Euclidean 3-space E®. Then, M? is parameterized by

r(u, v) = (u, v, A(f(u) +g(v)) + Bf (u)g(v)),

where A and B are non-zero real numbers.
We have the natural frame {r,, r,} given by

r=1(1,0, fla), 1, =1(0, 1, ¢'7y),
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wherex = A+ Bgand v = A + Bf.
From this, the unit normal vector field N of M? is given by

N = %(—af’, -8, 1),

where W = /1 + 242 + ¢/292.
The coefficients of the first fundamental form of M? are given by

E=1 _|_f/2a2, G=1 _|_g/2,>,2/ = f/g/ﬂé’%
The coefficients of the second fundamental form of the surface are

“f/l Bf/g/ ,)/g/l
L: = = = —.
w’ M w ' N 14Y

Hence, the mean curvature H and the Gaussian curvature K are given by, respectively

b txf”(l _|_g/2,),2) _ 2Bzx'yf’2g’2 4 7g"(1 +f/20€2)

17
ana , (17)
"o Bz 12 512
ko fg BT (18)
EG—F?
If the surface is minimal, that is, H = 0 on M?, we have from (17)
txf”(l +g/2,)/2) _ ZB“,yflzgu + ’Yg"(l +f/2“2) = 0.
The previous equation may be rewritten as
Dé’y//(Bz —I—Dclz’)’2> _ 20‘70/27/2 +’YOC//(B2 _’_,)//2 2) =0. (19)

Since the roles of a and 7 in (19) are symmetric, we only discuss the cases according to the function . We
distinguish cases.
Case 1. Let 7/ = 0. In this case (19) gives B2ya” = 0.

i) If v = 0, then f(u) = —4, M? is the horizontal plane of equation z = —’%f.
ii) If " = 0, then ¢(v) =av+b,a,b € R,and f(u) = ¢, c € R, M? is the plane of equation z = c1v + ¢, ¢1,

¢ eR.

Case 2. Let v/ = 0 and 7/ # 0, and by symmetry, a’ # 0. Then y(u) = Au+61, (A, 6) € R* xRand aisa
solution of the following ODE
— 2%’ + o (B? + A%a?) = 0. (20)

Then the general solution of (20) is given by

B
0((0) = Xtan(/\lv—ﬁ—)tz), A, Ap €R.

Hence

1 A
g(v) = Xtan()\10+/\2) -5 A, A € R

So, the parametrization of M? can be written in the form

A A? 1 A
r(u, v) = (u, v, Azu+ 6 + 3 tan(Av + Ap) — 5t B(Azu + 52)(X tan(Av + Ag) — ﬁ))’
where (A3, d;) € R* X R.
Case 3. Let 7" # 0. By symmetry in the discussion of the case, we also suppose a” # 0. If we divide (19) by
aya'?y?, we obtain
BZ,)/// 'Y'Y” B2a" !

,),D‘l2,)/12 ,),/2 mxlz,ylz w2 2=0.
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Thus, after a derivation with respect to u, followed by a derivation with respect to v, we obtain

,)/// i D(// i B
<'Y'Y/2),u <‘X/2),v + <mx’2 o ,)//2 y =0.

’

Hence we deduce the existence of a real number k € R such that

{ ((’Y,TY/Z),u =k (#),u ‘ (21)

o o —k L)
2 - 2
7.4 0 o«

The first equation of (21) can integrate obtaining

7" =7k +b17?). (22)
From the second equation in (21), we obtain

2" = —a(k+ bya'?). (23)
Substituting the above in (19), we get

ay((k+b17?)(B? +a%9?) — 2092 — (k + boa?) (B? +9%a?)) = 0.

n” /2

If we simplify by ay and then we divide by , we get
ky* — by B? ka* — b, B?

Hence, we deduce the existence of a real number A € R such that

N2 = ky?—byB? szz
A+t2—by
[x’2 ktxszl Z (24)
= A bpa? -

Differentiating with respect to # and v, respectively, we have

2

(A+2—-b172)?
" __ Dé(/\k*bl blez) (25)
 (A-ba?)?

13

{ 1 y(Ak+2k—b1 b, B?)

Let us compare these expressions of &’ and " with those ones that appeared in (22) and (23) and replace the
value of 72 and a'? obtained in (24). We get

(Ak+ 2k — byboB2) (14 A — byy?) =

(Ak — b1byB?)(A — 1 — bya?®) = 0.
We discuss all possibilities.

i) If Ak + 2k — b1byB? = 0 and Ak — b1b,B?> = 0, then k = 0 and b1b, = 0. Then (25) gives 7" = 0 and
" =0, a contradiction.
ii) If Ak + 2k —b1bpB> = 0, A = 1 and b, = 0, we obtain k = 0. Then (25) gives v/ = 0and a” = 0, a
contradiction.
iii) If Ak — b1bpB> = 0, A = —1 and by = 0, we obtain k = 0. Then (25) gives 9/ = 0O and &’ = 0, a
contradiction.
iv) f14+ A —byv?> =0and A — 1 — bya® = 0, we deduce that a, y are both constant functions, and so, 7’ = 0
and a” = 0, a contradiction.

Therefore, we have the following:
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Theorem 9. Let M? be a TH-surface in 3. If M? is minimal surface, then M? is plane or parameterized as

r(u,0) = (u, v, A(f(u) + g(v)) + Bf (u)g(v)),
where

i) either f(u) = %u + % and g(v) = )%1 tan(A3v + Ag) — 4 or

i) f(u) = L tan(Aqu + A3) — 4 and g(ov) = Mo+ M4,

1

6. TH-surfaces with zero Gaussian curvature in 3

A surface in Euclidean 3-space parameterized by (1) has Gaussian curvature

P ocvf”g” o Bzflzgzz
EG — F2 '

Hence that if K = 0, then
oc'yoc"'y” o ,Y/zalz =0. (26)

Since the roles of the function ¢ and « are symmetric in (26), we discuss the different cases according the
function +.
Case 1. Let o/ = 0. In this case 7 is a constant function y(u) = 1y and the parametrization of (1) writes as

r(u,v) = (u, v, 618(v) + &2).

This means that M? is a cylindrical surface with base curve a plane curve in the vz— plane.

Case 2. Lety” = 0and 7/ # 0. Then y(u) = Au+ 61, (A, §) € R* x R. Moreover, (26) gives &’ = 0 and a(v) =
vp is a constant function. Now M? is the plane of equation z(u,v) = Au+61, A, 61 € R.

Case 3. Let 7" # 0. By the symmetry on the arguments, we also suppose a” # 0.

Equation (26) writes as
" A

Y i

,),/2 - an!!”

Therefore, there exists a real number A € R* such that

Ty &
7 =
Integrate these equations
! — Jeaq
{ =k -
o =koar,

where ki and kj are constants of integration.

i) If A =1, the general solution of (27) is given by

{ () = Ayehis

a(v) = Ayek2?,

where A; and A; are constants of integration.

Hence
flu) = Ageh 4+ A4
8(v) = Asek2? + g,

where A3, Ay, A5, Ag € R.
i) If A # 1, the general solution of (27) is given by

=

>

{ y(u) ((1—A)k1u+cl)A1—
a(v) = (5 )kov 4 c2) %1,
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where ¢; and c¢; are constants of integration.
Hence

{ Fu) c3<<1fA>k1u+cl>ﬁ +ey
g(0v) = c5((22)kav + ¢2) 7T + ¢4,

where c3, ¢4, 5, cg € R.

Theorem 10. Let M? be a TH-surface in Euclidean 3— space E® with constant Gauss curvature K. Then K = 0.
Furthermore, the surface is plane or is a cylindrical surface over a plane curve or parameterized as

r(u,0) = (u, v, A(f(u) +g(v)) + Bf (1)g(v)),

where

i) either f(u) = A3ef1" + Ay and g(v) = Asek2? + Ag or

ii) f(u) =c3((1—A)kqu +cl)ﬁ +cgand g(v) = c5((252)kov + €2) ©T + ce.
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